Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.

نویسندگان

  • Zachary D Parsons
  • Kent S Gates
چکیده

Protein tyrosine phosphatases (PTPs) play an important role in the regulation of mammalian signal transduction. During some cell signaling processes, the generation of endogenous hydrogen peroxide inactivates selected PTPs via oxidation of the enzyme's catalytic cysteine thiolate group. Importantly, low-molecular weight and protein thiols in the cell have the potential to regenerate the catalytically active PTPs. Here we examined the recovery of catalytic activity from two oxidatively inactivated PTPs (PTP1B and SHP-2) by various low-molecular weight thiols and the enzyme thioredoxin. All monothiols examined regenerated the catalytic activity of oxidized PTP1B, with apparent rate constants that varied by a factor of approximately 8. In general, molecules bearing low-pKa thiol groups were particularly effective. The biological thiol glutathione repaired oxidized PTP1B with an apparent second-order rate constant of 0.023 ± 0.004 M(-1) s(-1), while the dithiol dithiothreitol (DTT) displayed an apparent second-order rate constant of 0.325 ± 0.007 M(-1) s(-1). The enzyme thioredoxin regenerated the catalytic activity of oxidized PTP1B at a substantially faster rate than DTT. Thioredoxin (2 μM) converted oxidized PTP1B to the active form with an observed rate constant of 1.4 × 10(-3) s(-1). The rates at which these agents regenerated oxidized PTP1B followed the order Trx > DTT > GSHand comparable values observed at 2 μM Trx, 4 mM DTT, and 60 mM GSH. Various disulfides that are byproducts of the reactivation process did not inactivate native PTP1B at concentrations of 1-20 mM. The common biochemical reducing agent tris(2-carboxyethyl)phosphine regenerates enzymatic activity from oxidized PTP1B somewhat faster than the thiol-based reagents, with a rate constant of 1.5 ± 0.5 M(-1) s(-1). We observed profound kinetic differences between the thiol-dependent regeneration of activity from oxidized PTP1B and SHP-2, highlighting the potential for structural differences in various oxidized PTPs to play a significant role in the rates at which low-molecular weight thiols and thiol-containing enzymes such as thioredoxin and glutaredoxin return catalytic activity to these enzymes during cell signaling events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of an anaerobic environment to preserve the endogenous activity of protein-tyrosine phosphatases isolated from intact cells.

Protein-tyrosine phosphatases (PTPases) have a common cysteine residue whose reduced state is integral to their phosphocysteine-mediated reaction mechanism. The catalytic cysteine thiol can be oxidized or conjugated during cellular redox reactions, which provides an important means of PTPase regulation in vivo. Because exposure to air can artifactually oxidize this reactive thiol, PTPase assays...

متن کامل

An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag.

Protein tyrosine phosphatases are crucial regulators of signal transduction and function as antagonists towards protein tyrosine kinases to control reversible tyrosine phosphorylation, thereby regulating fundamental physiological processes. Growing evidence has supported the notion that reversible oxidative inactivation of the catalytic cysteine residue in protein tyrosine phosphatases serves a...

متن کامل

KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases.

The cyclin-dependent kinases are key cell cycle regulators whose activation is required for passage from one cell cycle phase to the next. In mammalian cells, CDK2 has been implicated in control of the G1 and S phases. We have used a two-hybrid protein interaction screen to identify cDNAs encoding proteins that can interact with CDK2. Among those identified was a protein (KAP), which contained ...

متن کامل

A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells.

The production of reactive oxygen species (ROS) exerts an additional tier of control over tyrosine phosphorylation-dependent signal transduction by transiently inhibiting the catalytic activity of specific protein tyrosine phosphatases (PTPs). Hence, the ability to detect reversible oxidation of PTPs in vivo is critical to understanding the complex biological role of ROS in the control of cellu...

متن کامل

Reactions of an organoruthenium anticancer complex with 2-mercaptobenzanilide--a model for the active-site cysteine of protein tyrosine phosphatase 1B.

The organometallic anticancer complex [(η(6)-p-cymene)Ru(en)Cl]PF(6) (1, en = ethylenediamine) readily reacts with thiols and forms stable sulfenate/sulfinate adducts which may be important for its biological activity. Protein tyrosine phosphatase 1B (PTP1B), a therapeutic target, contains a catalytic cysteinyl thiol and is involved in the regulation of insulin signaling and the balance of prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 52 37  شماره 

صفحات  -

تاریخ انتشار 2013